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REPORT ON THE PHD THESIS OF KAROL BOLBOTOWSKI

This letter constitutes my report on the PhD thesis of Karol Bolbotowski. It is in fact an
outstanding thesis — among the best I have seen in my 40 years on the faculty of the Courant
Institute.

I'll start with some basic information. The thesis is entitled FElastic Bodies and Structures of
the Optimum Form, Material Distribution, and Anisotropy. Tt was done under the supervision
of Tomasz Lewinski and Piotr Rybka. It presents three distinct {but related) research thrusts,
concerning:

e Free material design (Chapters 3 and 4),
e Optimal design of planar membranes {Chapter 5), and

o Optimal design of forms (Chapter 6).

Three research papers have already been completed based on this material: Setting the free mate-
rial design problem through the methods of optimal mass distribution (coauthored with Tomasz
Lewinski, available as arXiv:2004.11084); Optimal design versus mazimal Monge-K antorovich
melrics (coauthored with Guy Bouchitté, to appear in Arch Rational Mech Anal, available as
arXiv:2104.04894); and Optimal vault problem — form finding through 2D convex program {avail-
able as arXivi2104.07148). These papers correspond to Chapters 3 & 4, Chapter 5, and Chapter
6 respectively.

Turning to the science, it is natural to start by briefly summarizing the scientific foundation
upon which this thesis builds. It includes:

(i) The theory of Michell trusses. This theory links the design of maximally-rigid truss-like
continua to a dual pair of convex optimimizations, one with L' growth and the other with
[ constraints. Due to the L! — L% character of this theory, the optimal structures it
produces can concentrate on lower-dimensional sets.

(ii) The existing literature on free malerial design. This work assumes that the cost per unit
area of a Hooke’s law H is a convex function of A, and uses methods [rom PDE-constrained
convex optimization to minimize the cost of a 2D or 3D structure subject to constraints
on its mechanical performance. This work usually places upper and lower bounds on the
Hooke's law, to ensure that the equations of elasticity are uniformly elliptic; as a result,



concentrated structures of the type seen in Michell trusses do not arise,

(iii) A body of work on optimal vaults. This work designs shells that robustly support vertical
loads (due e.g. to gravity) by ignoring resistance to bending and insisting that the stress
be everywhere compressive (that is, negative semi-definite}. While the concept is old, there
was (prior to Bolbotowski’s work) little vision about how such shells could be identified
(let alone optimized) using methods from convex optimization.

Turning now to Bolbotowski’s accomplishments:

Chapters 3 & 4 of the thesis develop a theory of free material design that places neither lower
nor upper bounds on the Hooke's law, and that includes the Michell truss problem as a
special case. Importantly: the constitutive laws permitted by this theory are much more
general than linear elasticity; for example, one can assume that the material sustains only
compressive stresses, or only tensile stresses. This extension of the theory of free material
design is a timely and very natural development. While the mathematical toolkit required
to implement it was largely familiar from the literature on Michell trusses, this work is
nevertheless impressive for its elegance, efficiency, and generality.

Chapter 5 of the thesis studies the optimal design of a planar membrane when the loading is
transverse. This is quite different from — but just as natural as — the 2D Michell truss
problem (which considers in-plane loads and prohibits out-of-plane deformation). The
analysis uses a von Kdrma4n ansatz, which is entirely appropriate in the small-slope regime
where the optimal designs are expected to be found, Since a membrane wrinkles to avoid
compression, the theory assumes that the membrane can sustain only tensile stresses.
Rather surprisingly, despite the apparent nonconvexity of the von Kérman framework, the
restriction to tensile stresses restores convexity, thereby permitting an approach analogous
to that of Chapters 3 & 4. Another surprise emerges later in the chapter: the convex
optimizations that arise in this setting have close connections to the Monge-Kantorovich

___theory of optimal transport. Ishould emphasize that while the free material design frame-_
work of Chapters 3 & 4 plays a crucial role in Chapter 5, the presence of out-of-plane
deformation makes the analysis fundamentally different from what Bolbotowski had done
before.

Chapter 6 of the thesis studies the optimal design of load-bearing surfaces. Briefly: this chap-
ter finds optimal surfaces by (i) considering a “convex relaxation” of the design problem,
which can be solved by the methods of Chapter 5, then (ii} proving that under certain
circumstances the relaxed problem is equivalent to the original one, in the sense that it
does indeed determine an optimal surface. This two-step process builds on ideas intro-
duced in the late 70’s and early 80’s by William Prager and George Rozvany; however
Bolbotowski’s work is very different from what came before, providing an elegant and
rather general theory where Prager and Rozvany had previously presented what amount
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to a few examples.

Bolbotowski’s work on free material design (Chapters 3 & 4} is a contribution of the type one
expects to see in a PhD thesis: research that advances our understanding of an existing research
frontier. Iis work on the optimal design of membranes and forms (Chapters 5 and 6) are,
however, contributions of a type that one rarely sees in a PhD thesis: research that introduces
an entirely new viewpoint, thereby identifying an entirely new research frontier. As usual in
seminal contributions, this work answers important guestions but leaves more work t6 be done.
I therefore enjoyed reading the final sections of Chapters 5 and 6, which include thoughtful
discussions of some of the questions that remain open.

My summary of the thesis has emphasized its theoretical elements. I note, however, thal there
are also many instructive (and impressive) numerical examples.

I have not yet commented on the exposition. It is excellent: both efficient and clear. I par-
ticularly liked the Introduction, which offers a very clear summary of the thesis’ objectives,
methodology, and accomplishments (Section 1.2} and a fine review of the relevant literature
(Section 1.1).

No literature review is perfect, and I would like to mention one thread that Section 1.1 omits.
Chapter 4 introduces, as a modeling hypothesis, the idea that a membrane can sustain only
tensile stresses. This is supported (and its consequences have been studied) by a number of
articles on the mechanics of thin elastic sheets. I would point especially to the paper Rigorous
derivation of Foppl's theory for clamped elastic membranes leads to relazation by S. Conti,
F. Maggi, and 8. Miiller, SIAM J Math Anal 38(2), 2006, 657-680, which uses the same von
Kérméan framework that’s the starting point of Bolbotowski’s analysis. But it also seems worth
noting analogous results are known using models that avoid the small-slope hypothesis implicit
in the von Karman framework; examples of such work include Relazed energy densities for
large deformations of membranes, IMA. J Appl Math 52(3), 1994, 297-308 and The nonlinear
membrane model as variational limit of nonlinear three-dimensional elasticity by H. Le Dret-and
A. Raoult, J Math Pures Appl 74, 1995, 549-578.

I have already noted that Bolbotowski’s exposition is both efficient and ¢lear. I would have pre-
ferred, however, that the small-slope hypothesis implicit in the use of the von Kdrmaén frameworl
be noted more explicitly. Actually, the first introduction of a small-slope hypothesis is in Sec-
tion 1.1, where optimal arch-grids and cable-networks are motivated by a brief discussion of the
“fynicular problem.” We are reminded that when bending resistance is ignored, the equilibrium
of a cable with prestress s is modeled by —su” = f, where f is the vertical force and « is the
vertical digplacement. This ig correct — but of course it relies on a small-slope hypothesis, and
I would have preferred that this be mentioned explicitly.

The preceding criticisms are of course very minor. Overall, Karol Bolbotowski’s thesis is truly
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outstanding — achieving a level of excellence one sees only rarely, even at the best universities. In
particular (as noted earlier), Chapters 5 and 6 introduce an entirely new viewpoint concerning
the optimal design of membranes and load-bearing surfaces, thereby identifying an entirely new
research frontier. With this feature in mind, I am pleased to recommend that this work be
awarded whatever distinction your university reserves for its very best PhD theses.

Sincerely yours,

C

Robert V. Kohn
Silver Professor of Mathematics



